Sec 8.1 Variation Functions page 573

Given: \(y \) varies directly as \(x \). Find the constant of variation, \(k \), and write the variation function.

2. \(y = 6 \) when \(x = 3 \)
 \[
 y = kx \\
 6 = 3k \\
 k = 2 \\
 y = 2x
 \]

3. \(y = 45 \) when \(x = -5 \)
 \[
 y = kx \\
 45 = 5k \\
 k = 9 \\
 y = -9x
 \]

4. \(y = 54 \) when \(x = 4.5 \)
 \[
 y = kx \\
 54 = 4.5k \\
 k = 12 \\
 y = 12x
 \]

5. The wavelength \(\lambda \) of a wave of a certain frequency varies directly as the velocity \(v \), of the wave, and \(\lambda = 60 \) feet when \(v = 15 \) ft/s. Find \(\lambda \) when \(v = 3 \) ft/s.
 \[
 \lambda = k v \\
 60 = k(15) \\
 k = 4 \\
 \lambda = 4(3) \\
 \lambda = 12 \text{ feet}
 \]

6. The dollar amount \(d \) that Julia earns varies directly as the number of hours \(t \) that she works, and \(d = 116.25 \) when \(t = 15 \). Find \(t \) when \(d = 178.25 \).
 \[
 d = k(t) \\
 116.25 = k(15) \\
 k = 7.75 \\
 \frac{178.25}{7.75} = k(15)
 \]

7. The volume \(V \) of a rectangular prism of a particular height varies jointly as the length \(l \) and the width, \(w \), and \(V = 224 \) ft cubed when \(l = 8 \) ft and \(w = 4 \) ft. Find \(l \) when \(V = 210 \) ft. cubed and \(w = 5 \) ft.
 \[
 V = k(lw) \\
 224 = k(8)(4) \\
 k = 7 \\
 V = 210 = (7x5)l \\
 210 = 35l \\
 l = 6
 \]

Given: \(y \) varies inversely as \(x \). Find the constant of variation \(k \), and write the variation function.

9. \(y = 2 \) when \(x = 7 \)
 \[
 y = \frac{k}{x} \\
 2 = \frac{k}{7} \\
 k = 14 \\
 y = \frac{14}{x}
 \]

10. \(y = 8 \) when \(x = 4 \)
 \[
 y = \frac{k}{x} \\
 8 = \frac{k}{4} \\
 k = 32 \\
 y = \frac{32}{x}
 \]

11. \(y = \frac{1}{2} \) when \(x = -10 \)
 \[
 y = \frac{k}{x} \\
 \frac{1}{2} = \frac{k}{-10} \\
 k = -5 \\
 y = \frac{-5}{x}
 \]

12. The time \(t \) that it takes for a salesman to drive a certain distance \(d \) varies inversely as the average speed \(r \). It takes the salesman 4.75h to travel between two cities at 60 mi/h. How long would the drive take at 50 mi/h?
 \[
 t = \frac{k}{d} \\
 4.75 = \frac{k}{60} \\
 t = 5.7 \text{ hours}
 \]
 \[
 k = 285
 \]
27. The number of days it takes a movie crew to set up a stage for a scene varies inversely as the number of workers. If the stage can be set up in 3 days by 20 workers, how many days would it take if only 12 workers were available?

\[
d = \frac{k}{w} \Rightarrow \frac{20}{3} = \frac{k}{20} \Rightarrow k = 400 \text{ workers-days}
\]

\[
d = \frac{400}{12} = 33 \frac{1}{3} \text{ days}
\]

Determine whether each data set represents a direct variation, an inverse variation, or neither.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
y \text{ varies directly as } x, \text{ and } y = 30 \text{ when } x = -6.
\]

\[
y = \frac{kx}{5}
\]

\[
y = \frac{-5x}{3}
\]

Write and graph each variation function.

\[
y \text{ varies inversely as } x, \text{ and } y = 5 \text{ when } x = 3.
\]

\[
y = \frac{15}{x}
\]

\[
y = \frac{15}{x}
\]

Coming UP

Simplify each expression. Assume all variables are nonzero.

a) \(x^7 \cdot x^2 = x^{7+2} = x^9\)

b) \(y^3 \cdot y^3 = y^{3+3} = y^{6}\)

c) \(x^6 \cdot \frac{x^{10}}{x^2} = \frac{x^{6+10}}{x^2} = \frac{x^{16}}{x^2} = x^{14}\)

d) \(\frac{y^2}{y^5} \cdot y^2 - 5 = \frac{1}{y^3}\)

e) \(x^2 - 2x - 8 = (x-4)(x+2)\)

f) \(x^2 - 5x = x(x-5)\)

g) \(x^4 - 9x^3 = x^3(x^2 - 9) = x^3(x+3)(x-3)\)