Algebra 2 Worksheet
Section 6.6 - Fundamental Theorem of Algebra DAY TWO

I. Write the simplest polynomial function (in standard form) with the following zeros.

1. 3i and -5
 \((x)^2 = (3i)^2\)
 \(x^2 = 9i^2\)
 \(x^2 = -9\)
 \(x^2 + 9 = 0\)

 \(p(x) = (x+5)(x^2 + 9)\)
 \(p(x) = x^3 + 5x^2 + 9x + 45\)

2. -2i and \(\sqrt{2}\)
 \((x)^2 = (-2i)^2\)
 \(x^2 = 4i^2\)
 \(x^2 = -4\)
 \(x^2 - 4 = 0\)
 \(x^3 + 2x^2 - 8\)

II. Solve each equation by finding all the roots (EXACT VALUE). Use the calculator to help you.

3. \(x^3 - 7x^2 + 15x - 9 = 0\)
 Roots @ -1 and 3
 Double root
 \(X = -1, 3\)

4. \(14x^3 - 43x^2 + 14x^2 + 15x = 0\) CAREFUL GCF!
 \(x(14x^3 - 43x^2 + 14x + 15) = 0\)
 0 is a root
 \(\frac{14}{-210}\)
 \(\frac{-29}{-29}\)
 \(\frac{-15}{-15}\)
 \(\frac{14}{14}\)
 \(\frac{-29}{-29}\)
 \(\frac{-15}{-15}\)
 \(0\)
 \(\frac{-210}{0}\)
 \(14x^2 - 29x - 15 = 0\)
 Multi: -210
 Add: -29
 -35 and 6
 \((2x - 5)(7x - 3) = 0\)
 \(2x - 5 = 0\)
 \(7x + 3 = 0\)
 \(x = \frac{5}{2}\)
 \(x = -\frac{3}{7}\)
 \(x = 0, 1, \frac{5}{2}, -\frac{3}{7}\)
5. \(x^4 - 3x^3 + 5x^2 - 27x - 36 = 0 \)
 \[
 \begin{array}{c|cccc}
 & 1 & -3 & 5 & -27 \\
 \hline
 1 & 1 & 2 & -9 \\
 \end{array}
 \]
 \[
 \begin{array}{c|ccccc}
 & -1 & 1 & 9 & -9 \\
 \hline
 1 & 1 & 9 & 0 \\
 \end{array}
 \]
 \[
 x^2 + 9 = 0 \\
 x = \pm 3i
 \]

6. \(x^3 - 2x^2 - 2x - 3 = 0 \)
 \[
 \begin{array}{c|cccc}
 & 1 & -2 & -2 & -3 \\
 \hline
 1 & 1 & 3 & 0 \\
 \end{array}
 \]
 \[
 \begin{array}{c|ccccc}
 & 1 & -2 & -2 & -3 \\
 \hline
 1 & 1 & 3 & 0 \\
 \end{array}
 \]

III. Graphing Calculator.

7. Consider the polynomial function \(f(x) = 3x^4 + 40x^3 + 96x^2 + 144x - 715 \).
 (a) Use the Rational Root Theorem to list the possible rational roots of this equation.
 \[
 \pm 1, \pm 5, \pm 11, \pm 13, \pm 55, \pm 65, \pm 143, \pm 715
 \]
 \[
 \pm 1, \pm 3
 \]
 \[
 \frac{a}{b} : \pm 1, \pm 5, \pm 11, \pm 13, \pm 55, \pm 65, \pm 143, \pm 715
 \]
 \[
 (b) \ Graph \ the \ polynomial \ on \ a \ graphing \ calculator. \ Which \ possible \ rational \ roots \ are \ zeros \ of \ \(f(x) \)? \ How \ do \ you \ know? \\
 \[
 \begin{array}{c|c}
 x \text{-int of function} & \frac{5}{3} \\
 \hline
 -11 & \frac{5}{3}
 \end{array}
 \]
 (c) According to the graph, how many other real zeros does the function have?
 \[
 \text{None}
 \]
 (d) How many imaginary zeros does the function have?
 \[
 2
 \]
 \[
 (4 \ \text{total roots} \rightarrow 2 \ \text{real} \rightarrow 2 \ \text{imag})
 \]
 (e) Find the imaginary zeros. SHOW YOUR WORK.
 \[
 \begin{array}{c|ccccc}
 & 3 & 40 & 96 & 144 & -715 \\
 \hline
 1 & 3 & 7 & 19 & -65 \\
 \end{array}
 \]
 \[
 \begin{array}{c|ccccc}
 & 3 & 7 & 19 & -65 \\
 \hline
 1 & 3 & 7 & 19 & -65 \\
 \end{array}
 \]
 \[
 x^2 + 12x + 39 = 0 \\
 x = -4 \pm \frac{\sqrt{16 - 4(13)}}{2}
 \]
 \[
 x = -2 \pm 3i
 \]