In Section 6.4, you used several methods for factoring polynomials. As with some quadratic equations, factoring a polynomial equation is one way to find its real roots. Recall the Zero Product Property from Section 5.3. You can find the roots, or solutions, of the polynomial equation \(P(x) = 0 \) by setting each factor equal to zero and solving for \(x \).

Example 1: Solve each polynomial equation by factoring.

a. \(3x^3 + 18x^2 + 27x^3 = 0 \)
\(3x^3 (x^2 + 6x + 9) = 0 \)
\(3x^3 (x + 3)(x + 3) = 0 \)
\(3x^3 (x + 3) = 0 \)
\(3x^3 = 0 \) or \((x + 3) = 0 \)
\(x^3 = 0 \) or \(x + 3 = 0 \)
\(x = 0 \) or \(x = -3 \)
\(x = 0, -3 \)

b. \(x^4 - 13x^2 + 36 = 0 \)
\((x^2 - 9)(x^2 - 4) = 0 \)
\(x^2 - 9 = 0 \) or \(x^2 - 4 = 0 \)
\(x = \pm 3 \) or \(x = \pm 2 \)

\(x = \pm 2, \pm 3 \)

c. \(2x^6 - 10x^5 - 12x^4 = 0 \)
\(2x^4 (x^2 - 5x - 6) = 0 \)
\(2x^4 (x - 6)(x + 1) = 0 \)
\(2x^4 = 0 \) or \(x - 6 = 0 \) or \(x + 1 = 0 \)
\(x^4 = 0 \) or \(x = 6 \) or \(x = -1 \)
\(x = 0 \)

\(x = -1, 0, 6 \)

d. \(x^3 - 2x^2 - 25x = -50 \)
\((x^3 - 2x^2)(25x + 50) = 0 \)
\(x^2(x - 2) - 25(x - 2) = 0 \)
\((x - 2)(x^2 - 25) = 0 \)
\(x - 2 = 0 \) or \(x^2 - 25 = 0 \)
\(x = 2 \) or \(x = \pm 5 \)

\(x = 2, \pm 5 \)

Sometimes a polynomial equation has a factor that appears more than once. This creates a multiple root. In example 1a, \(3x^3 + 18x^2 + 27x^3 = 0 \) has two multiple roots, 0 and -3. For example, the root 0 is a factor 3 times because \(3x^3 = 0 \).
The multiplicity of a root r is the number of times that $x-r$ is a factor of $P(x)$. When a real root has an even multiplicity, the graph of $y = P(x)$ touches the x-axis but does not cross it. When a real root has odd multiplicity greater than 1, the graph "bends" as it crosses the x-axis. In this class, we will primarily deal with multiplicities of 1, 2, or 3.

You cannot always determine the multiplicity of a root from a graph. It is easiest to determine multiplicity when the polynomial is in factored form.

Example 2: Identify the roots of each function. State the multiplicity of each root.

a. $f(x) = x^2(2x+1)(x-3)$
 \[x^2 = 0, \quad 2x+1 = 0, \quad x-3 = 0\]
 \[x = 0, \quad x = -\frac{1}{2}, \quad x = 3\]
 mult of 2

b. $f(x) = (x+5)^3(x-6)^2$
 \[(x+5)^3 = 0, \quad (x-6)^2 = 0\]
 \[x = -5, \quad x = 6\]
 mult of 3

Example 3: Use your graphing calculator to make a sketch of the function and to find its roots. Then rewrite the function in factored form.

a. $f(x) = x^4 + x^3 - 9x^2 + 11x - 4$
 roots: single
 $f(x) = (x-1)^3(x+4)$

b. $f(x) = x^5 + 16x^4 + x^2 - 470x^2 + 1276x - 968$
 You may need to change your window.
 roots: triple
 $f(x) = (x-2)^3(x+11)^2$
DAY TWO:

Not all polynomials are factorable, but the Rational Root Theorem can help you find all possible rational roots of a polynomial equation.

Rational Root Theorem

If the polynomial $P(x)$ has integer coefficients, then every rational root of the polynomial equation $P(x) = 0$ can be written in the form $\frac{p}{q}$, where p is a factor of the constant term and q is a factor of the leading coefficient of $P(x)$.

NOTE: Make sure the polynomial is written in standard form before you apply this Theorem!

Example 4: Use the Rational Root Theorem to identify all the POSSIBLE rational roots.

a. $P(x) = 3x^6 - 12x^3 + 10x^2 - 15$

 p: $\pm 1, \pm 3, \pm 5$

 q: $\pm 1, \pm 3$

 $\frac{p}{q}$: $\pm 1, \pm 3, \pm 5, \pm \frac{1}{3}, \pm \frac{5}{3}$

b. $P(x) = 4x^3 + x^2 - 8x + 12$

 p: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$

 q: $\pm 1, \pm 2, \pm 4$

 $\frac{p}{q}$: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}$

Polynomial equations may also have irrational roots.

Irrational Root Theorem

If the polynomial $P(x)$ has rational coefficients and $a + b\sqrt{c}$ is a root of the polynomial equation $P(x) = 0$, where a and b are rational and \sqrt{c} is irrational, then $a - b\sqrt{c}$ is also a root of $P(x) = 0$.

NOTE: Basically, irrational roots come in pairs. The irrational root and its complex conjugate.

Example 5: Use the Irrational Root Theorem to find the smallest possible degree of the polynomial with the given roots.

a. -4 and $\sqrt{2}$

 $\sqrt{2}$

 3

b. 2, -3, and $1 + \sqrt{7}$

 $1 - \sqrt{7}$

 4

c. $2 - \sqrt{5}$, $\sqrt{3}$, $-4 + \sqrt{3}$

 $2 + \sqrt{5}$, $-\sqrt{3}$, $-4 - \sqrt{3}$

 6
Now, let's put all these ideas together when finding the real roots of a polynomial equations, which may not always be factorable. We will use our calculator to help us in our search.

Example 6: Identify all the real roots of each equation. Give exact values. No decimals.

(a) \(9x^3 - 23x^2 - 62x + 40 = 0\)
From calc: \(-1\) is a root
\[\begin{array}{c|cccc}
& 9 & -23 & -62 & 40 \\
\hline
1 & 9 & -13 & -40 \\
\hline
& 1 & -13 & -40 \\
\end{array}\]
\[\frac{-21}{9} \quad 13 \quad -10 \quad 0\]
\[\frac{-21}{9} \quad 13 \quad -10 \quad 0\]
\[9x - 5 = 0\]
\[9x = 5\]
\[x = \frac{5}{9}\]

(b) \(2x^3 - x^2 - 54x + 27 = 0\)
From calc: \(-1\) is a root
\[\begin{array}{c|cccc}
& 2 & -1 & -54 & 27 \\
\hline
1 & 2 & -1 & -54 \\
\hline
& 1 & -1 & -54 \\
\end{array}\]
\[x = \pm 3\sqrt{3}\]

(c) \(x^4 + 7x^3 + 63x + 36 = 55x^2\)
From calc: \(-1\) is a root
\[\begin{array}{c|cccc}
& 3 & 5 & 10 & -25 \\
\hline
-1 & 3 & 0 & -75 \\
\hline
& 3 & 0 & -75 \\
\end{array}\]
\[x = \pm 3\sqrt{3}\]

Example 7: Graphing Calculator.

Consider the polynomial function \(f(x) = x^4 - x^3 - 30x^2 + 10x + 200\).

(a) Use the Rational Root Theorem to list the possible rational roots of this equation.
\[p: \pm 1, \pm 2, \pm 5, \pm 10, \pm 20, \pm 25, \pm 50, \pm 100, \pm 200\]
\[q: \pm 1\]
So, \(\frac{p}{q}\): same as list for \(p\).

(b) Graph the polynomial on a graphing calculator. Which possible rational roots are zeros of \(f(x)\)? How do you know?

\[-4, 5 \quad x\text{-intercepts of the function}\]

(c) According to the graph, how many other real zeros does the function have?
\[2 \text{ more}\]

(d) Approximate these zeros to the nearest hundredth by using the zero feature.
\[\approx -3.16 \text{ and } 3.16\]